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on a Viscous Liquid at Small Reynolds 

S U M M A R Y  
The generation of steady surface waves on a viscous liquid flowing down an irregular inclined plane is investigated 
in the shallow-liquid approximation. A non-linear differential equation gives the surface elevation and a numerical 
solution is presented for a periodic two-dimensional flow. Linearisation of this equation enables three-dimensional 
small-amplitude disturbances to be considered. 

1. Introduction 

In an earlier paper [1] by the author, an analysis was given of steady waves generated on the 
surface of a viscous liquid by perturbations in an inclined plane down which the liquid was 
flowing. The basic shear flow is one of the simplest instances in which steady flow can be main- 
tained with a free surface. The equations of motion and the boundary conditions were linearised 
and the forced waves were analysed from perturbations from the basic shear flow with inertia 
effects small. 

The character of the surface waves depends on three parameters : the Reynolds number R, 
the angle of inclination fl of the plane and the ratio of mean liquid depth and a typical dis- 
turbance length e. In the previous paper the case of small R and unrestricted fl and e was 
examined. The problem is reconsidered here for effectively zero Reynolds number and small 5. 
Certain justifiable approximations can be made which result in some simplification in the 
boundary-value problems. Furthermore, three-dimensional disturbances can be included in 
the analysis. 

Figure 1 shows the coordinate scheme, the forcing wave y = q(x, z) and the free surface 
y = h(x, z). The surface y = q(x, z) is a perturbation from a plane inclined at the angle fl to the 

Y 

Figure 1. 
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horizontal. Suppose h o is the mean depth of liquid, qo the maximum amplitude of q(x, z), x o 
a typical length of the disturbance down the plane and Zo a typical length across the inclined 
plane. For the shallow liquid theory we assume that q0 and h o are both small compared with 
xo and Zo, but may themselves be of the same order. In the latter case a nonlinear differential 
equation must be solved for h. If in addition qo is small compared with ho further linearisation 
is possible, and the results by this method can be satisfactorily compared with those in [1]. 

In these flows of high viscosity and low fluid speed the question of stability does not really 
arise. However the nonlinear wave problem does reveal a steepening of the wave on the down- 
stream side of the crest. 

2. Equations and boundary conditions 

With inertia terms neglected, the pressure p and the components of fluid velocity (u, v, w) 
satisfy 

Px = P9 sin fl + pvVZu,  (2.1) 

py = - p g  cos fl--}-pvV2v, (2.2) 

p~ = pvV2w , (2.3) 

in a uniform gravitational field. In these equations p is the density of the fluid, v its kinematic 
viscosity and V z the usual three-dimensional Laplacian operator. In addition, continuity 
demands that 

: u~ + Vy + w~ = 0.  (2,4) 

Since we are considering a shear layer of fluid and since the wavelength of disturbances is large 
compared with the mean depth, we may reasonably suppose that 

V 2 ~ Q2/Oy2 

Further, the assumptions qo ~ Xo, qo ~ Zo imply a perturbation of the flow from that down an 
inclined plane and because of this we may discard y-variations of v compared with those of u 
and w. Equations (2.1)-{2.3)now approximate to 

Px = P9 sin fl + pvuyy , 

Py= - P 9  cos t ,  

Pz = pVWyr , 

for p, u and w, whilst v can then be determined from (2.4). 
On y = q(x, z), we impose the usual no-slip conditions : 

u = v = w = 0 .  

(2.5) 

(2,6) 

(2.7) 

(2.8) 

Continuity of stress is required at the free surface y = h(x, z). The normal to the free surface 
has components (hx, - 1, h~) and if we assume that Ihxl and  Ihzl are small in comparison with 1, 
the continuity of stress at y = h(x, z) becomes to the lowest order 

u y + v x = O ,  p =  2pvvy, v z + w  r = O ,  

(see Wehausen [2], p. 574). Again we neglect x- and z-derivatives compared with y-derivatives 
and drop vy in the second condition. Thus on y = h(x, z) 

u y = 0 ,  p = 0 ,  w y = 0 .  (2.9) 

Finally the kinematic surface condition 

u h x - v + w h  ~ = 0  on y = h ( x , z ) ,  (2.10) 

produces the differential equation for h. 
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The approximate equations and boundary conditions can be deduced by a systematic 
approximation procedure, but the main assumptions are those explained above. This is a long 
wave theory in which the whole fluid layer is treated as a boundary layer. 

We note that if q = 0, then v = w = 0 and 

u = gY (2ho - y)/(2v), 

the usual velocity distribution for a liquid of constant depth ho flowing down an inclined plane. 
As Benjamin [3] remarks, the character of any disturbance to the basic flow depends on the 
Reynolds number R = Ply, where P = 2hou(ho)/3 is the rate of volume flow per unit span of the 
stream. Clearly R = oh g sin fl/(3V 2) and we are investigating the case of small R. 

3. Solutions of the Equations 

From (2.6) and (2.9), we see that 

p = p g  (h - y)  c o s  /? , (3.1) 

indicating, as we might perhaps expect, that the pressure is hydrostatic to the lowest order. 
Substitution of this pressure field into (2.5) and (2.7) yields two ordinary differential equations 
for u and w subject to boundary conditions (2.8) and (2.9). Their solutions are 

u = g(y - q)(h x cos f l -  sin fl)(y + q - 2h)/(Zv), (3.2) 

w = ghz cos fi(y - q)(y + q - 2h)/(Zv), (3.3) 

Integration of continuity condition (2.4) together with (2.8) gives 

v = - g ( y - q ) [ ( y - q ) ( h x x + h J { � 8 9  cos fl+ (h~ cos /?-s in /?)  

�9 { 2 q ~ ( h - q ) - h x ( y - q )  } +h~ cos f l{2q=(h-q)-h~(y-q)}]/(2v)  (3.4) 

Finally, substitution of (3.1), (3.2) and (3.3)into the kinematic surface condition (2,10)produces 
the following nonlinear differential equation for h : 

(hx~ + h~) (h-  q) + 3 (h~- tan/?) (h~- q~) + 3h~ (hz- q~) = 0. (3.5) 

It is convenient at this stage to non-dimensionalise the terms in (3.5). With x = xoX, z--xoZ, 
q(x, z )= qoQ(X, Z)and h(x, z )= qoH(X, Z), equation (3.5)becomes 

(Hxx + Hzz ) (H - Q) + 3 (Hx - k ) (Hx-  Qx) + 3Hz ( H z -  Qz) = O, (3.6) 

where k = Xo tan/?/qo. 

4. Two-Dimensional Flow 

In the absence of variations of Q and H with respect to Z, equation (3.6) reduces to the ordinary 
differential 

H x x ( H -  Q) + 3(Hx - k ) (Hx  - Qx) = 0, (4.1) 

where Q is a given function of X. This equation may be integrated once to give 

(Hx - k ) ( H -  Q)3 = C,  (4.2) 

where C is a constant. Let us now suppose that 0 < fl < �89 Since H must exceed Q for each X 
and Hx must be less than k for some X (this is equivalent to the restriction hx < tan fl), we con- 
clude that C is a negative constant and further that the inequality Hx < k is satisfied for all X. 
This implies that the tangent plane to the surface cannot be horizontal at any point. 

The constant C can be interpreted by considering the rate of flow down the plane. The rate of 
volume flow per unit span through any plane x = constant must be a constant P, say, where 

P = u dy = - ( H -  Q)3 (H x -  k) gq~ cos fl/(3vxo). (4.3) 
q 
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Comparison of (4.2) and (4.3) shows that 

C = - 3VXo P/(gq~ cos fi). (4.4) 

Equation (4.2) does not seem to have an elementary solution, except in the case fl = �89 
when 1/k--* 0 a n d H  = Q + constant. In other words in shallow flow down a vertical plate the 
free surface adopts the same shape as the perturbing wave. Equation (4.2) can be used to obtain 
inverse solutions; for a given function H, Q can be found without integration. However, the 
equation can be solved numerically without difficulty using standard techniques. 

Suppose that the forcing wave is sinusoidal with equation q = A cos cox. In the previous 
notation we choose qo = A and x0 = 1/o9 so that Q = cos X. Equation (4.2) becomes 

( H x - k ) ( H - c o s  X) 3 = C.  (4.5) 

The equation contains two parameters C and k which need to be specified. The values k = 1/re 
and C = - 1/re were chosen for the computation of a particular solution. This case, in which 
C = - k ,  seemed interesting since from (4.4) 

P = A3g sin fl/(3v). 

In the flow down an inclined plane with the same volume flow P we observe that A = ho, the 

2.0 
y 

/ 

-1.0 , 
N / 2  "1~ 3 E / 2  X 2 E  

Fig. 2 

depth. This, of course, can only be an estimate since we do not know a priori what mean depth 
will correspond to the solution of (4.5). 

Of all the solutions of (4.5) we require the periodic one, that is the solution of (4.5) subject to 
the condition H(0) = H(2n). Some simple estimates establish the approximate position of the 
isolated periodic solution. A step-by-step integration procedure was used to determine H. 
The surface wave obtained is shown in figure 2. In the theory of differential equations this 
periodic solution is unstable since neighbouring solutions diverge from the periodic solution 
as X increases. This is certainly evident in the numerical scheme and also analytically in the 
linearised equation which will be considered later in this section. This instability which appears 
in the differential equation will not correspond to physical instability, and can be accounted 
for by the absence of the x-derivatives in the equations of motion. If these terms had been in- 
cluded their effect would have been to damp out any waves of increasing amplitude. 

The stream function ~ is given by integration of 

u=~,,, v=-qJx. 
Several streamlines are shown in Fig. 2. The surface wave has a characteristic steepness on the 
downstream side of the crest, together with a shift upstream of the points of maximum and 
minimum height with respect to the forcing wave. 
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Equation (4.2) can be linearised if the mean depth is large compared with the perturbation 
amplitude. If we let H = H'  + ho/qo where h0 is the mean depth, and substitute H into (4.2), 
retaining only constant and first degree terms in H and Q, we find that 

C = - k (ho/qo) 3 
and 

H ' x -  mH'  = - mQ , (4.6) 

where m = 3kqo/h o. The solution of this equation with the transient ignored can be written as 
the convolution integral 

H ' =  me  ~x f x  e-m"Q(u)du"  (4.7) 

For a sinusoidal forcing term given by q = A cos cox, (4.7) simplifies to 

t x H' = m e  "x  e -~" cos udu 

= N {m(m+ i)eiX/(m 2 + 1)}. 

With respect to the forcing wave this wave has an amplitude and phase difference given by 

3A/ (q+ e2 cot z fl)~, tan-1 (�89 cot fl), 

where e = o)ho. For small e, these agree with the amplitude and phase difference derived in 
equations (5.4) and (5.5) of [1] which were obtained from the full linearised equations. This 
agreement provides a useful check on the scope of the shallow-liquid approximation developed 
in the present work. 

5. Three-Dimensional Waves 

For general disturbances the full equation (3.6) must be considered. This nonlinear partial 
differential equation has no obvious general solution and as in the previous section we attempt 
a linearisation procedure. Let H = H'  + ho/qo in equation (3.6) and discard terms of higher 
degree than the first in H, Q and their derivatives. We find that H' satisfies 

H'xx + H ' z z -  mH'x = - mQx , (5.1) 

where, as before, Q is a prescribed function of X and Z. Taking double Fourier transforms of 
this equation with respect to X and Z in terms of parameters r and s respectively, we find that 
the transform H'  of the solution can be expressed as 

H' = mir Q/(r 2 + s 2 + mir) , (5.2) 

where Q is the double transform of Q according to the definition 

~)(r ,s)= f_~  f~  Q ( X , Z ) e - i r x - i s Z d X d Z .  

The inversion theorem applied to (5.2) expresses the free surface elevation as a double Fourier 
integral : 

H,(X,Z)= mi foo fo~ r~)elX,+~Zs 
~n2 -oo - ~ r2 + s2 + mi r dr ds . (5.3) 

Alternatively, the solution can be obtained by considering the right-hand side of (5.2) as the 
product of two transforms and expressing it as a double convolution integral along the lines 
described by Sneddon [4], p. 44. Treating (5.2) as the product of ir/(r2+ s2+ mir) and mQ, we 
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first determine the function whose double Fourier transform is given by the former expression. 
This function, q (X, Z) say, is 

i f ~  f~  reirX+isz 
tl = ~ -oo oo r2 + s2 + mir dr ds ' 

= i (o ~ foo r e~rXc~ 2, dr ds, (5.4) 
2~z 2 (r + �89 2 + (s 2 + ~m ) 

, - - 0 9  

by symmetry in s. Tiip substitution r = R - �89 transforms (5.4) into 
/ 1 

iemX/2 (~z ,'w.,+xmi I R 1.~ ;\eiRX ~0~1~.7\ 

r / -  2~r2 J 0  .!-~+�89 R2q-s2q-lm2 

iemX/2 fi~ f_' (R-�89 i"x cos(sZ) 
- 2zc2 ~ R2+s2+�88 2 dRds,  (5.5) 

the deformation of the contour being permissible since the integrand has no singularities on or 
between the two infinite contours and also since the contribution from the closure of the two 
contours vanishes in the limit. The integrals with respect to both s and R can be successively 
read off from tables of Fourier transforms (Erdhlyi [5],  pp. 8, 65, 16, 17). We find that 

tl = me mx/2 [Ko {�89 2 + Z2) 4} - X ( X  2 + zz ) -~K,  {�89 2 + Z2)}}]/(4rc), (5.6) 

where Ko and K~ are modified Bessel functions. Finally the convolution integral for H'  becomes 

H ' ( X  1 Z )  = ~ -co e'nU/2[Ko{�89 ~} -u(uZ+v2)-~K~{�89 x 
, oo 

• Q ( X - ~ ,  z - i ) d u d ~ .  (5.7) 

This result should reduce to (4.8) when Q(X, z)  is independent of Z and provide a useful 
check on (5.7). It follows in this case that 

- i 
H'(X) = ~ Q(X-u)em"/2du [K o {�89 ~} + 

oo --az 

- ~  (u ~ + ~)-~' K, {�89 (u ~ + ~)*} ] d~, 

m ~ f ~176 - 2~(~ -~o 0 ( x  -u)e~"/~ (lul ~ -u/lu[ ~)K~(2mM)du,• (5.8) 

using an integral formula listed by Gradshteyn and Ryzhik [6], p. 705. Since the Bessel function 
K4 is an elementary function, equation (5.8) reduces to 

i ~ I r ( x )  = m Q(X-~)e~"d~, 
-oo 

which is equivalent to (4.8). 
The integrals in (5.3) or (5.7) can be evaluated in some simple cases. For example, if 

q :  A cos(o~) cos(Oz), 

and we choose qo = A and x 0 = l/e), then Q = cos x cos(#Z) where # = (2/co. The double 
Fourier transform of Q expressed in terms of generalised functions becomes 

C) = 7~ 2 {6 ( r -  1)+ 6(r+ 1)} {6(s -  # )+  6 ( s+#)} ,  

where 6 (x) is the Dirac delta function. Inversion of this transform produces 

H' = m (m cos X -  (1 + #2) sin X) cos (#Z)/{ (1 + #2)2 + m2}. 
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This forced wave has the same periods still in the X- and Z-directions, a decreased amplitude 
and a phase shift in the X-direction, the crest preceding that of the forced wave as in two- 
dimensional case. 

Further solutions can be obtained in closed form if the forcing term is harmonic in either 
X o r Z .  

6. Comment 

Some useful comparisons can be made with the paper by S. H. Smith [7] which appears in this 
Journal. The intuitive approach adopted above is complemented by the more formal derivation 
given in [7], and both analyses lead to essentially the same equation for the free surface eleva- 
tion given by equation (14) in [7] and equation (4.2) here. Numerical solutions of this equation 
are given in both papers : in [7] for isolated humps and in Section 4 for a periodic disturbance. 
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